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% ON THE FITTING OF PEARSON CURVES TO SUMS OF
. INDEPENDENT RANDOM VARIABLES
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Introduction and Summary.

'{f In this report, we attempt to answer the following questions.
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L.

1. 1s the sum of independent beta (Pearson Type I) random

aqn

. variables distributed as a beta random variable?

.
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2. How well is the distribution of a sum of independent betas
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approximated by a beta distribution?

P

3. If two or more independent random variables are best fitted

o e N
274’

by one type of Pearson curve, is their sum best fitted by a Pearson

~ l‘ .i.f.‘..' 3" 2

[ curve of the same type?

Section 1 of this paper shows that the answer to the first question
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is "no". However, the calculations and computer simulations described

»
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in section 2 show that the sum of independent beta random variables often

has a distribution which is close to a beta distribution, so that the
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answer to the second question is often 'very well".

P

;E Section 3 shows that the answer to the third question depends on
- the Pearson curve type of the random variables and on whether they are
.ég identically distributed. Theorem 1 of this section shows that the sum
';i of independent, identically distributed random variables of Pearson Type
?: I, II, III or VII is best fitted by a Pearson curve of the same type.
25 This is "almost" true for the other Pearson types in a certain sense.
?ﬁ When the independent random variables to be added are not identically
;, distributed, Pearson curve type is not preserved to this extent.
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However, Theorem 2 and Theorem 3 can be used to determine the possible

Pearson curve types of the sum given the Pearson curve type of the
summands. There is some interest in the question of whether the sum of
independent chi random variables is best fitted by a Pearson Type I
distribution. (A single chi random variable is best fitted by a Pearson
Type I.) The report finishes by showing that Pearson curves of Types I,
IIT, IV, V, and VI can be best fitting for a sum of two independent chi

random variables.

1. 1Is the Sum of Independent Beta (Pearson Type I) Random Variables

Distributed as a Beta Random Variable?

It is easy to exhibit counterexamples, such as a sum of two inde-
pendent U[0,1] random variables. More generally, consider m indepen-
dent betas with intervals of support [O,al], [0,a2],...,[0,am]. It seems
to be the case that the density of the sum of these betas will not be
infinitely differentiable at points which can be written as the sum of
some subset of the ak's. Since the density of a beta is infinitely
differentiable in the interior of its interval of support, this would
imply that a sum of independent betas never has a beta distribution. A

rigorous proof of this claim has not been worked out, however.

2. How Well is the Distribution of a Sum of Independent Betas Approxi-

mated by a Beta Distribution?

Percentage points were found for the Pearson curves whose first four
moments agreed with the first four moments of various test distributions.
These values are compared with the true percentage points or with percen-

tage points obtained from computer simulation. The results are found in

Tables 1-4. All the Pearson curves used were beta distributions.




Let Ul’ Uy, and Uy be independent U[0,1] random variables.
Let B2 2 and Bé 2 be Beta(2,2) random variables independent of each
E] ’
other and of the U,'s. Table 1 gives percentage points, the Pearson

i

curve approximations to these percentage points, and the true per-
centile values corresponding to the Pearson curve values for four
symmetric test distributions. Note that the Pearson curve approxi-
mations do worst for U1 + UZ’ whose tent-gshaped density does not
look much like any beta density. The Pearson curves do about equally
well for the other three test distributions.

Table 2 gives true, computer simulation, and Pearson curve per-
centage points for a sum of two R(1,3) random variables. The
computer simulation values were obtained by generating two independent
random numbers uniformly distributed on [0,1], doing a transformation
to obtain independent random numbers with a B(1,3) distribution,
recording the sum, and iterating this procedure 106 times. The other
computer simulations were done in the same way, except that 5 and 10
independent B£(1,3) random numbers were added in each of the 106
iterations. The table shows that the computer simulation percentage
points are in very good agreement with the true percentage points.

The Pearson curve values are not as good, especially in the lower
tail.

Tables 3 and 4 give computer simulation and Pearson curve percen-
tage points for sums of 5 and 10 1.1.d. B8{1,3) random variables, res-
pctively. The true percentage points were not found because the

calculations would have been too messy, but Table 2 shows that the

computer simulation values should be quite close to the true ones.
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Table 4 also includes percentage points obtained from the Edgeworth

expansion with Edgeworth correction terms of orders n-llz, a7t

and n—3/2. The different methods show very good agreement in both

tables.

These results give an indication of how well the distribution
<f a sum of i.1.d. B(p,q) random variables is approximated by a
beta distribution when p and q are small positive integers.
The Pearson curve approximation for a sum of two such betas gives
only rough agreement with the true percentage points. One explana-
tion of this behavior is that the density for a sum of two such
betas exhibits a lack of "smoothness'" at 1. For example, the "tent-

function" density of U, + U, does not have a first derivative at

1 2

1, while the sum of two B(1,3) random variables does not have a
third derivative at 1. Thus, it is not surprising that such a
density is not well approximated by a beta density, which is necessarily
infinitely differentiable in its interval of support. As the number
of 1id betas which are added together increases, the smoothing effect
of convolution on the density and the approach of the distribution
toward the normal distribution makes the approximation by a beta
better, Changing from integer values for p and q to real numbers
of similar size should not seriously affect the quality of the approxi-
mations.

Moderate deviations from the identically distributed case should
not make much difference either, although the next section will show

that the Pearson curve which best fits a sum of independent, non-

identically distributed betas is not always itself a beta. If p and
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q are both very small positive numbers, it could be necessary to add
a large number of these betas together before the sum distribution is
smooth enough to be close to a beta. To take an extreme example,
consider p = q = 10-6. Such a B(p,q) puts almost all of its mass
very close to 0 or to 1. The distribution of a sum of k such
betas would concentrate its mass close to the integers 0,1,2,...,k

unless k were quite large.
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g Table 1
5 True percentage points, Pearson curve approximations to these
. percentage points, and true percentiles for the Pearson curve vaues
o for four sum distributions.
. ?
U+, U1+U2+U3 U1+BL2 2’2+82J2
Kurtosis 2.4 2.6 2.4107 2.5714
Range [0,2] {0,3] [0,2] [0,2]
True 0,252 point .0707 .2466 .1390 .2112
Pearson value . 0348 .2318 .1331 .1990
True 7 for Pearson .06% .21% .22% .20%
True 0,57 point .1000 .3107 .1763 .2536
Pearson value .0789 3077 .1737 .2512
True Z for Pearson .31% 492 .48% 48%
True 1,0% point L1414 .3915 .2242 .3052
Pearson value .1342 3966 2241 .3056
True Z for Pearson . 90% 1.04% 1.00% 1.00%
True 2,57 point .2236 .5314 .3092 .3918
Pearson value .2305 « 5402 .3110 .3944
True % for Pearson 2.66% 2.63% 2,54% 2.56%
True 5,0% point .3162 .6694 .3966 4760
Pearson value 3277 .6752 .3986 4785
True % for Pearson 5.372 5.13% 5.07% 5.09%
True 10.0% point 4472 8434 .5123 .5824
Pearson value .4554 .8428 .5133 .5832
True % for Pearson 10.37% 9,98% 10.05% 10.04%
25.0% .7071 1.1471 .7338 7761
Pearson value .7003 1,1452 .732 775
True % for Pearson 24.52% 24,88% 24,90% 24,857
6
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Table 2

True, computer simulation (106 rep.), and Pearson curve

percentage points for a sum of two B(1,3) r.v.'s.

Computer Pearson True Percentiles of
Percent True Simulation Curve Pearson Curve Values
.25% 0.0240 0.0243 0.0071 .0222%
-7 4 0.0341 0.0343 0.0210 .19%
1.02 0.0487 0.0492 0.0396 .67%
2.5% 0.0786 0.0790 0.0748 2.28%
5% 0.1139 0.1142 0.1137 4.98%
1072 0.1672 0.1676 0.1696 10.26%
252 0.2884 0.2886 0.2909 25.34%
50% 0.4669 0.4667 0.4656 49.837%
75% 0.6766 0.6765 0.6743 74.787%
90% 0.8769 0.8770 0.8796 90.14%
95% 1.000 1.0001 1.0048 95.14%
97.52 4 1.1091 1.1089 1.1122 97.55%
992 1.2353 1.2358 1.2333 98.98%
99.5% 1.3187 1.3183 1.3123 99.47%
99.75% 1.3930 1.3910 1.3824 99.72%
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Table 3

Percentage points for a sum of 5 iid B(1,3) random variables

Computer Pearson
Percent Simulation Curve
R .25% 0.287 0.279
.5% 0.338 0.326
1.0% 6.396 0.395
2.5% 0.497 0.496
5% 0.588 0.592
10% 0.709 0.712
25% 0.938 0.938
50% 1.221 1.220
75% 1.531 1.531
90% 1.828 1.828
95% 2.010 2.012
97.5% 2.170 2,173
992 2.358 2.362
99.5% 2.488 2.490
99.75% 2.610 2.609
8
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Table 4

Percentage points for a sum of 10 iid B(1,3) random variables.

[ Computer Pearson Edgeworth
3 Percent Simulation Curve Expansion
«25% 1.0112 1.0092 1.0157
.52 1.1068 1.1070 1.1084
; 1.0% 1.2160 1.2172 1.2160
: 2.5% 1.3860 1.3881 1.3859
; 52 1.5416 1.5434 1.5417
E 102 1.7308 1.7319 1.7311
- 25% 2.0680 2.0683 2.0685
502 2.4724 2.4710 2.4715
; 75% 2.9004 2.9006 2,9005
: 90% 3.3040 3.3060 3.3055
‘ 95% 3.5520 3.5555 3.5553
: 97.5% 3.7688 3.7752 3.7752
99% 4.0256 4.0337 4.,0332
: 99.5% 4.2056 4.2112 4,2100
99.75% 4.3716 4.3764 4.,3750
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: 3. If Two or More Independent Random Variables are Best Fitted by

One Type of Pearson Curve, is Their Sum Best Fitted by a Pearson

Curve of the Same Type?
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The answer to this question will depend on the type of Pearson

;j curve which best fits the summand random variables. However, before
the investigation of this question can begin, it will be necessary to

;: establish some notation and to make some background remarks concerning

the Pearson curve system.

Let X, and X, be independent random variables with finite

1 2
fourth moments. Lgt Kl’ K2’ K3, and K4 be the first four cumulants
o of Xl. Let Ll’ LZ’ L3, and L4 be the first four cumulants of Xz.
The first four cumulants of X1 + X2 will be Kl + Ll’ K2 + L2,
K3 + L3, and K4 + L4. Let /FY', /ET R and/@%_ be the skewness
. values for Xl, X2, and X1+X2 respectively. Let Bé, ;, and §2
X be the kurtosis values for Xl, X5, and X1+X2, respectively. Recall

that /EI and Bé are defined by

- The other skewness and kurtosis values are defined analogously. The

i symbols /EI and 82 will be used as generic symbols for skewness

and kurtosis,

K A Pearson curve is uniquely determined by its first four moments.

J Thus, a natural way to fit a Pearson curve to a probability distribution

is to find the Pearson curve whose first four moments match those of

10
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the distribution. In this discussion,the "best fitting" Pearson curve
will be defined to be the one found in this way. However, other
fitting methods are sometimes used. For example, Pearson curves

are sometimes fitted to chi random variables so as to match the

first three moments subject to the constraint that O be the left

endpoint of the interval of support.

Up to location ar. :z~alie, the Pearson curve which best fits a
distribution is determirned by the skewness /EI and the kurtosis 82
of the distribution. Since the type of a Pearson curve is location
and scale invariant, /EI and BZ determine the type.

The following formulas, taken from Johnson and Kotz (1970), show
how to find Pearson curve type from /EI and 82. Define €y9€1sC9s

and k by

-1
co = (48,-38,)(108,~128,-18) "u,

-1 r
/B, (B,+3)(108,-128,-18) " Vii,

0
[

-1
(282-361-6)(1032-1281-18)
1 2 -1
K= C (cocz) .
Type I: k < 0 , which is equivalent to 282—381-6 < 0.

Type II: Bl = 0, 82 <3,

Type III: 282-381-6 =0 .

11
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\iﬁ Type IV: 0<xkxk<1l,

(

‘g: Type V: K=1.

%: Type VI: K>1.

E Type VII: B, =0, B, >3 .

f The classification of (81,62) pairs implied by these formulas is
displayed graphically on the next two pages, which are taken from Rhind
(1909). The "limit for all frequency distributions” line has been
added to Rhind's version of Figure 1. The text of Rhind's paper
indicates that existence of this limiting line was not known in 1909.

jii The line labeled V in Figure 1 may look like it is not quite straight
because of sloppiness on Rhind's part, but this is not the case. This

i; curve is the solution to the cubic equation

2

B,(B,¥3)% = 4(48,-38,) (28,-38,-6) .

E% The curve is also shown on Figure 2, where it is more obvious that it

e is not straight. The line labeled III is straight, however,

ii The kurtosis 82 does not seem to be a convenient parameter for
the purposes of this discussion. For this reason, let us define Y',

;. Y", and ; by

Ei Y' = 85-3 s Y' = 33-3 , and Y = 32-3 .

2

;gf Thus, the Y parameters are related to the cumulants by

f 12
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This diagram, taken from Rhind (1909), shows how Bl and Bz
determine Pearson curve type.
"J-shaped" betas fall in UI'
"J-shaped" betas fall in JI.
Other betas fall in II.
For all distributions, (81,82) satisfies 82-81-1 < 0.
Pearson curves for which (81,82) falls below the "86 = o

line have an infinite 8th moment.

Figure 1.

13
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) This diagram, taken from Rhind (1909), relates Pearson curve type to
.? 81 and B2 for a larger part of the (81,82) plane than is covered by

Figure 1.
N Figure 2.
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' K4 " L‘. A K4+L4
Yy = 7 ’ Yy = 3 Y= —"—2_ .
K, L, (Ky+L,)

One can think of this Y parameter as being a normalized fourth cumu-
lant in the same way that /§I' is a normalized third cumulant.
The Pearson curve corresponding to a given distribution is of
course specified, up to location and scale, by the values of /§I
and y of the distribution. When one works in terms of 81 and Y
instead of in terms of Bl and 82, Figure 1 is replaced by Figure 3.
Let us subdivide the region in the (Bl,y) plane which corres-
ponds to Type I distributions into the regions I , I+, and IO.
(See Figure 4.) I 1is the part of the Type I region where Y < 0,
I+ is the part of the Type I region where <y > 0, and Io is
the part of the Type I region where <y = 0. These subregions have
no known significance with respect to the shapes of the Pearson curves
they contain. Their importance arises solely from the question to be
investigated.
If Bl = 0, the Pearson curve type is determined by the sign
of vy:

Bl =0, Y<O0 implies Type II.

B, = 0, Y =0 dimplies Type G (normal distribution)

1

B, =0, yvy>0 implies Type VII.

1
If Bl > 0, the Pearson curve type is "almost" determined by
the ratio =L :
By

EI < 0 implies Type I .
1

15
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This diagram is the same as Figure 1, except that the vertical
axis is parameterized by Y instead of 82.

Figure 3.
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This diagram, taken from Rhind (1909), shows how the Type I region

- +
in the (Bl,y) plane is divided into the regions I and I and the

1line Io.

Figure 4.
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El = 0 implies Type Io.
1

0< 31 <'% implies Type I+.
1
EI--'% implies Type III.
1
3.X fmpli VI, Type V 1
28, plies Type VI, Type V, or Type IV.

Now if one restricts attention to that part of the (Bl,Y) plane

shown in Figure 4, there exists some small number ¢ > 0 such that
4
P} 3 X
3 3 < < 2-¢ implies Type VI (true even when Bl > 1.8),
o

2-¢ 5_%5 2+¢ is implied by Type V,
1

L 2+¢ < EI implies Type 1V.
1
3
- This completes the necessary background remarks, so that we can
:4
finally procede to the question of interest. To begin, let us consider
what happens when Xl and x2 are 1id, or, to restrict attention to
what i{s relevant here, when Xl and X2 are such that KZ = Lz,
K3 = L3, and K4 = L%. In this case, we have
A K,+L 2K
:: ?- 4 42- lz.-%-'ﬁnz—"-.
(K2+L2) sz
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3 2 o2 a0 g
A . (K3+L3) ) 41(3 81 Bi

s
. B " —e W e——
2 2
] . Lok’ e
N
}‘ ~ A
i If Bi = 0, this implies Bl = 0 and sign(y) = sign(y'). If Bi > 0,
] z '
N this implies =L = X-r .
By F1
1
Thus, the Types II, G, and VII, which occur when B1 = 0, are
preserved under addition of two 1id random variables. The same is
2 -
true of Types I , Io, I+, and III, which are characterized by the value
,} of the ratio -?l , 8ince this ratio is preserved under addition of two
;. 1
iid random variables. The Types VI, V, and IV are "almost" preserved
in the same sense that they are "almost' determined by the ratio El .
- 1
- Thus, Type VI random variables for which 3/2 < EI < 2-€£ are pre-
N 1
{ served under addition in this sense. The same is true for Type IV
random variables for which 2+€ < EI and 0 < B, < 1.8. TypeV
; 1
;% random variables will almost never be preserved, but the sum of two
-4 iid Type V's for which 0 < B1 < 1.8 will be very close to a Type V
o
distribution with re;pect to its first four moments. The second deriva-
N
‘: tive of the Type V curve is negative close to Bl = 0 and is positive
L
;: when Bl is large, so there will be at least one point (Bl,Y) on the
o
B1
y curve for which (-, %) is also on the Type V curve.
- If n 1id random variables are added, the Bl and Y values
, for the sum are equal to % times the corresponding values for the sum-

mands. It follows that all of the above results hold when n instead

of just two 1id random variables are added together. Let us record

this formally as

PPV P R P
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i Theorem 1. Suppose a random variable X 1s best fitted by a Pearson
!

- curve of Type I, II, III, or VII. If n 1iid coples of X are

E; added together, the sum is best fitted by a Pearson curve of the same
- type. The same is "almost" true for Pearson curve Types IV, V, and
R V1 in the sense described zbove.

'f When xl and X, are not iid, matters become more complicated.
S The relationship between the (Bi,Y') and (B",B") pairs of the

summands and the (§l,§) pair of the sum is not so easily described

as in the iid case. The key result here will be Theorem 3, although

s

Theorem 2 will be useful also.

: ’ "vn‘u‘. Ay oty Ceety
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i Theorem 2. §1 g_max{B',B;}, and |y| < max{|y'[,|y"]}.
";g
4 Proof. Suppose B} 5_Bi . In terms of the cumulants, this means
g 8
3 =< 3
3 L K
NY
. so that
s L, 3/2
) 2,
> L, i"‘a“xz) :
Thus,

2
N (RytLy)
B]_ . —

o .‘ WAL
[LAXMALAR XY o TSI Ly SR

3
(R, +L,)
([Ry [+,
. < 3
e (RytLp)
L, 3/2 2
o drgl+igl @ )
~ 2
\: < 3
) (K, +L,)
- 20
,'
)
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«/2413/2

2 2 )
3
(K2+L2)

3/2 . .3/2]2
. K2 +L2

3/2 ¢
(K2+L

[

9)

Since x3/2 is a convex increasing function of x for x > O,

K3/2 + L3/2 /2 )

3
2 2 S (Kptly)

This and the above imply
) L t an
B, <8 max{B .Bl} .

The proof of the second assertion is similar. m

Theorem 3. If y' and Y" have the same sign (positive, negative,

or 0), then ; also has this sign, and

=Y > mant ] ) R3S
8, 1 1

Here, [%l is to be interpreted as * for every a € R. If the

sign of y' and Yy" 4s mot 0, then equality holds if and only if

Yy = 7T and rum .
K L K2 L2

K I Ko Ly
2 2
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Proof. The proof is trivial when sign(y') = sign/y") = 0.

E : sppose that Y' > 0 and Y" > 0. This implies ¥y > O.
> 2
3 Note that B1 = (/E;) is never negative. Thus, the assertion

is equivalent to

B' 11
f_max{§%- §%ﬂ .

’
~ >|U»

':::' Let
:\;;;7 B]'.. B:'I:

c=max{?.-, ‘_'} .

(1)

-<)| >
=
in
[¢]

if and only if

a4
Lk
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Equation (4) is always true. Following the chain of implications

bazk up shows equation (1) is always true.
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If K;/2/§I 4 Lélz/gf » then we have strict inequality in (4).
Strict inequality in (4) implies strict inequality in all the pre-

ceding steps. Note that K;/Z/EI = L;/Z/ET is equivalent to

Ky Ly By By
r If ;T‘# 7 then we get strict inequality in (2) when
2 2

we go up from (3) to (2). Strict inequality in (2) implies strict

% L 1 B
inequality in (1). Note that —— = — 1is equivalent to —% = —F
K, L, Y Y
5 I3
when T holds. This shows that the "only if" part of the
2 2
last assertion.
K L K L,
1f 2=-2 and %= both hold, then K./2/BT = L/2/ET
K, L K, L 7 I e B |
2 2 2 2
81 Bf
and ?%-= ™ This implies inequality in (4) and in all the preceding

steps. This finishes the case Y' > 0 and ¥" > 0. The proof for the

case Y'< 0 and Y" < 0 is similar. m

It follows from Theorem 3 that if independent random variables
are best fitted by Type II Pearson curves, then their sum is also
best fitted by a Type II Pearson curve. The same holds for Type VII,
for the union of Type 1° and Type G, and for the union of Type I and
Type 11. These results would have been trivial to prove directly,
however. It is on the types for which y > 0 that Theorem 3 sheds
the most light. For example, if (Bi,y') and ( ;,Y") are both in
region I', then (81,;) may fall only in I', III, VI, V, IV, and
VII. However, if (Bi,y') and (Bg,y") fall in the Type VI region,

then (§l,§) must be in VI, V, IV, or VII. By using both Theorem 2
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and Theorem 3, one can conclude that (Bl.Y) will be in either IV or

VII when (Bi,y') and ( I,Y") are in that part of the IV region for

which 0 < B, < 1.8 and 2+ < EI .
1

The most interesting application of Theorem 3 is to Type III

random variables. Suppose that x1 and X2 both have gamma distri-

butions with support on [0,®). Then the densities of Xl and X2

are Type III Pearson curves, so that (Bi,y') and (BI,Y") fall on

the line ?f = %-. By the first part of Theorem 3, (Bl,Y) must fall
in IITI, VI, V, IV, or VII. However, the fact that xl and X2 are

gamma distributions with right tails implies /§I >0 and /ET >0 .
This in turn implies Y6, > 0, so that (8,,Y) will not fall in VII.
Now we can apply the condition for equality in Theorem 3. When Xl

and X, are both gamma random variables, the condition for equality

2
in Theorem 3 is equivalent to the condition that the scale parameters

of X, and X, be the same. Two gamma random variables with the same

1 2

scale parameter are, at least in a limiting sense, sums of 1id copies
of the same random variable. (Recall that a gamma random variable with
shape parameter k and scale parameter A can be thought of as a sum
of k independent exponentialmndom variables with parameter A. This
interpretation is useful even when k 1is not a integer.) Thus, we are
essentially back in the case covered by Theorem 1 when the equality
condition of Theorem 3 holds for gamma random variables. On the other

hand, Theorem 3 implies that X;+X, will have the first four moments

2
of a Pearson curve of Types VI, V, or IV when Xl and x2 have dif-
ferent scale parameters. Thus, the sum of two gamma random variables

with different scale parameters cannot have the first four moments of

a gamma random variable.

—imfata "mta A" = oa
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It may also be enlightening to look more closely at what can
happen when (Bi,y') and (Bg,y") are in 1T, By Figure 4, it

is possible for X, to have a beta distribution such that

1
(8;,Y") = (1,1). Suppose this holds if X; "~ B(p,q), and that
/EI = 1. Suppose further that X, % B(q,p). Then (B],Y") = (1,1),

but Jﬁ? = -1. Note also that, modulo a location shift, X, will

2
have the same distribution as -}&. In this case, we will have
(Y’Bl) = ( %30) € VII. Tius, the sum of two beta random variables

can have the same first four moments as a t distribution. This will

be the case whenever (Bi,y') € I+ and X2 has the same distribution

as -xl .
Now suppose that (Bi,y') = (1,1), and that (BI,Y") = (0,0).
Thus, X2 will have the same first four moments as a normal distri-

bution. Calculation of Bl and vy yields

2
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so that K

This is true because K2 is just the variance of X

1’ 2
can be varied by scale transformations which leave (Bi,y') unchanged.

The same holds for L2 of course. Thus, by properly choosing K,

S R,+L
and L., %-- 2_2
B

9 m can be made equal to any given number in (1,*).
2

This result and Theorem 2 imply that (;.gl) can be made to fall into
any of I+, III, VI, V, and IV in this case. Since §1 and ; are
continuous functions of the cumulants of x1 and Xy, it is not hard
to see that (Sl,§) can fall into any of I+, I11, Vi, V, and IV even
when (Bi,y') and (BI’Y") are in I+ and /EI has the same sign

as BI .

Interest has been expressed in the fitting of Pearson curves to
sums of independent chi random variables. Results contained in Elandt
(1961) are helpful here. The Elandt paper gives formulas for the
moments of noncentral chi random variables. It also contains a diagram
(Figure 1, p. 555) showing how the (61,82) pair for a noncentral chi
moves through the (81,62) plane as the noncentrality parameter changes.
Comparison of this diagram with Figure 1 on page 13 of this paper shows
that a chi random variable is always best fitted by a Type I Pearson
curve. By Theorem 1, any sum of finitely many iid chi random variables
is also best fitted by a Type 1 Pearson curve. The question of whether
this is true for nonidentically distributed summands now arises. The
following shows that the best fitting Pearson curve for the sum of a
central chi random variable and an independent noncentral chi random

variable can be of Type I, III, IV, V, or VI.

Let Xl be a central chi random variable arising from taking

the absolute value of a N(0,1). Let X2 be a N(0,1) random

variable independent of xl. It will now be shown that x1+x2 has

the first four moments of a Type IV Pearson curve.
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It is easy to find the first four cumulants Kl’KZ’K3’ and K

4
of Xl from the first row of Table 1 in Elandt (1961). The calcula-
tions imply

K1 = 00,7979

K2 = 0.3634

K3 = (,21804

K4 = 0.11473 .

The first four cumulants of x2 are of course

L, =0

If we again use §1 and gz for the (skewness)2 and kurtosis

of x1+x2, we get

2
3 - Kata) | c0.21804)

- = 0,01876
1 (x2+1.2)3 (1.3634)°
and
. K, +L
32 =3 +.__(‘_._"_.i. 3 +_°.:_!-l7_“_7. 3.06172 .
(K2+L2) (1.3634)

~

Also, Y = 62-3 = 0.06174. Thus, —L = 3.290. It is easy to see
1

% from Figure 3 that (§1,§) € IV.

zi Since the second, third, and fourth cumulants of a chi arising

ﬁé from N(u,l) approach those of a normal N(0,1) as u + =, the

g% continuity of 31 and ; as functions of the cumulants implies that
%g the sum of the central chi |N(0,1)| and the noncentral chi  |[N(u,1)|
i




will have (§1,§) in IV for u sufficiently large. As U varies
from 0 to =, the (§1,§) pair will trace out a continuous curve
in the (Bl,y) plane which starts in the Type I region and ends in
the Type IV region. By continuity and the fact ﬁhat ﬁl is positive
everywhere along this curve, the curve must pass through the regions
for Types I, III, VI, V, and IV. Calculations using moments for
[N(3,1)| obtained from the last row of Table 1 in Elandt (1961) show

that (§1,§) is still in I+ when u = 3,
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